Internal tides are generated as the surface tides move stratified water up and down sloping topography, which produces a wave in the ocean interior. So internal tides are internal waves at a tidal frequency. The other major source of internal waves is the wind which produces internal waves near the inertial frequency. When a small water parcel is displaced from its equilibrium position, it will return either downwards due to gravity or upwards due to buoyancy. The water parcel will overshoot its original equilibrium position and this disturbance will set off an internal gravity wave. Munk (1981) notes, "Gravity waves in the ocean's interior are as common as waves at the sea surface-perhaps even more so, for no one has ever reported an interior calm."
The surface tide propagates as a surface wave in which water parcels in the whole water column oscillate in the same direction at a given phase (i.e., in the trough or at the crest, Fig. 1, top). This means that while the form of the surface wave itself may propagate across the surface of the water, the fluid particles themselves are restricted to a relatively small neighborhood. Fluid moves upwards as the crest of the surface wave is passing and downwards as the trough passes. Lateral motion only serves to make up for the height difference in the water column between the crest and trough of the wave: as the surface rises at the top of the water column, water moves laterally inward from adjacent downwards-moving water columns to make up for the change in volume of the water column. While this explanation focuses on the motion of the ocean water, the phenomenon being described is in nature an interfacial wave, with mirroring processes happening on either side of the interface between two fluids: ocean water and air. At the simplest level, an internal wave can be thought of as an interfacial wave (Fig. 1, bottom) at the interface of two layers of the oceans differentiated by a change in the water's properties, such as a warm surface layer and cold deep layer separated by a thermocline. As the surface tide propagates between these two fluid layers at the ocean surface, a homologous internal wave mimics it below, forming the internal tide. The interfacial movement between two layers of ocean is large compared to surface movement because although as with surface waves, the restoring force for internal waves and tides is still gravity, its effect is reduced because the densities of the two layers are relatively similar compared to the large density difference at the air-sea interface. Thus larger displacements are possible inside the ocean than are possible at the sea surface.
Tides occur mainly at diurnal and semidiurnal periods. The principal lunar semidiurnal constituent is known as M2 and generally has the largest amplitudes. (See external links for more information.)
The internal tidal energy in one tidal period going through an area perpendicular to the direction of propagation is called the energy flux and is measured in Watts/m. The energy flux at one point can be summed over depth- this is the depth-integrated energy flux and is measured in Watts/m. The Hawaiian Ridge produces depth-integrated energy fluxes as large as 10 kW/m. The longest wavelength waves are the fastest and thus carry most of the energy flux. Near Hawaii, the typical wavelength of the longest internal tide is about 150 km while the next longest is about 75 km. These waves are called mode 1 and mode 2, respectively. Although Fig. 1 shows there is no sea surface expression of the internal tide, there actually is a displacement of a few centimeters. These sea surface expressions of the internal tide at different wavelengths can be detected with the Topex/Poseidon or Jason-1 satellites (Fig. 2). Near 15 N, 175 W on the Line Islands Ridge, the mode-1 internal tides scatter off the topography, possibly creating turbulence and mixing, and producing smaller wavelength mode 2 internal tides.
The inescapable conclusion is that energy is lost from the surface tide to the internal tide at midocean topography and continental shelves, but the energy in the internal tide is not necessarily lost in the same place. Internal tides may propagate thousands of kilometers or more before breaking and mixing the abyssal zone ocean.
However, models are now beginning to include spatially variable mixing related to internal tides and the rough topography where they are generated and distant topography where they may break. Wunsch and Ferrari (2004) describe the global impact of spatially inhomogeneous mixing near midocean topography: “A number of lines of evidence, none complete, suggest that the oceanic general circulation, far from being a heat engine, is almost wholly governed by the forcing of the wind field and secondarily by deep water tides... The now inescapable conclusion that over most of the ocean significant ‘vertical’ mixing is confined to topographically complex boundary areas implies a potentially radically different interior circulation than is possible with uniform mixing. Whether ocean circulation models... neither explicitly accounting for the energy input into the system nor providing for spatial variability in the mixing, have any physical relevance under changed climate conditions is at issue.” There is a limited understanding of “the sources controlling the internal wave energy in the ocean and the rate at which it is dissipated” and are only now developing some “parameterizations of the mixing generated by the interaction of internal waves, mesoscale eddies, high-frequency barotropic fluctuations, and other motions over sloping topography.”
|
|